超临界流体抗溶剂法制备水飞蓟素纳米颗粒及其体外释放研究

杨刚,赵亚平,冯年平,张永太

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (9) : 784-788.

PDF(1243 KB)
PDF(1243 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (9) : 784-788. DOI: 10.11669/cpj.2015.09.011
·论 著·

超临界流体抗溶剂法制备水飞蓟素纳米颗粒及其体外释放研究

  • 杨刚1,2,赵亚平2,冯年平1,张永太1
作者信息 +

Preparation and in Vitro Release of Silymarin Nanoparticles by Supercritical Anti-Solvent

  • YANG Gang1,2, ZHAO Ya-ping2, FENG Nian-ping1, ZHANG Yong-tai1
Author information +
文章历史 +

摘要

目的 采用超临界流体抗溶剂技术(supercritical anti-solvent, SAS)制备难溶性药物水飞蓟素(silymarin,SM)纳米颗粒(nanoparticle),改善其体外释放行为。方法 单因素考察压力、温度、进样流速、药物浓度对纳米颗粒粒径和沉淀率的影响,并采用扫描电镜(SEM)、差示扫描量热法(DSC)、X-射线衍射法(XRD)等进行表征。评价水飞蓟素纳米颗粒的体外溶出行为。结果 优选纳米颗粒制备条件为:压力15 MPa,温度35 ℃,进样流速1.5 mL·min-1,溶液质量浓度100 mg·mL-1。X-射线衍射法与差示扫描量热法分析显示,经超临界流体抗溶剂技术将水飞蓟素原药粉制备成水飞蓟素纳米颗粒后,其结晶度减小并转变为无定型态。体外溶出实验结果显示,其累积释放度在10 min内达到80%以上,显著高于原药粉和市售制剂益肝灵。结论 超临界流体抗溶剂技术制备的水飞蓟素纳米颗粒粒径显著减小,能显著提高药物的体外溶出度。

Abstract

OBJECTIVE To enhance dissolution rate of silymarin (SM) by forming SM nanoparticles (SM-NA) with supercritical anti-solvent (SAS) method. MOTHODS Single-factor test was employed to investigate the influencing factors of particle size and yield of SM-NA, such as pressure, temperature, flow rate, and concentration of the solution. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to determine the state of SM-NA. The dissolution characteristics in vitro were investigated with 0.3% SDS aqueous solution as the solvent and compared with the SM powder. RESULTS Taking size distribution as well as yield of SM-NA as the evaluation indexes, the optimal prepration parameters were selected as followings:pressure 15 MPa, temperature 35 ℃, flow rate 1.5 mL·min-1, concentration 100 mg·mL-1. The XRD and DSC of SM-NA described the decrease of SM in crystallinity, and it was transformed mostly with the amorphous state, compared with the SM powder. The accumalte release rate of SM-NA achieved 80% within 10 min, markedly higher than that of the SM powder and its commercial preparation. CONCLUSION The SM-NA prepared by SAS has remarkablly smaller particle size thus can greatly improve the in vitro release of SM.

关键词

水飞蓟素 / 超临界流体抗溶剂技术 / 纳米颗粒 / 溶出度

Key words

silymarin / supercritical anti-solvent (SAS) / nanoparticle / in vitro release

引用本文

导出引用
杨刚,赵亚平,冯年平,张永太. 超临界流体抗溶剂法制备水飞蓟素纳米颗粒及其体外释放研究[J]. 中国药学杂志, 2015, 50(9): 784-788 https://doi.org/10.11669/cpj.2015.09.011
YANG Gang, ZHAO Ya-ping, FENG Nian-ping, ZHANG Yong-tai. Preparation and in Vitro Release of Silymarin Nanoparticles by Supercritical Anti-Solvent[J]. Chinese Pharmaceutical Journal, 2015, 50(9): 784-788 https://doi.org/10.11669/cpj.2015.09.011
中图分类号: R944   

参考文献

[1] REN R B, ZHAO Y Y, XU B H, et al. Study on extraction of silimarin and purification of silibinin . Lishizhen Med Mater Med Res (时珍国医国药), 2012, 23(3):655-656.
[2] SUN T M, LI X. Advances in pharmacological studies of silymarin. Chin Tradit Herb Drugs (中草药), 2000,31(3):229-232.
[3] ZHANG Y, ZHANG L Y. Application of ultra-fine powder technology to crushing Chinese medicinal herbs and insoluble medicines. World Sci Technol/Mod Tradit Chin Med (世界科学技术:中医药现代化) , 2001, 3(2):9-11.
[4] LI F W, LI Z Z. Preparation of microparticle by supercritical fluid precipitation and analysis of its influence factors . Inner Mongolia Petrochem Ind (内蒙古石油化工), 2010, 36(4):82-83.
[5] SU S C, LO W S, LIEN L H. Micronization of fluticasone propionate using supercritical antisolvent process . Chem Eng Technol, 2011, 34:535-541.
[6] CARENO S, BOUTIN O, BADENS F. Drug recrystallization using supercritical anti-solvent (SAS) Process with impinging Jets:Effect of process parameters . J Cryst Growth, 2012, 324(1):34-41.
[7] CAO Z, SUN L, CAO L, et al. Production of ursolic acid nanoparticles by supercritical antisolvent precipitation . Adv Mater Res, 2011, 233:2210-2214.
[8] BADENS E, BOUTIN O, CHARBIT L, et al. Jet dispersion and jet atomization in pressurized carbon dioxide . J Supercrit Fluids, 2005, 36(1):81-90.
[9] RANTAKYLA M, JATTI M, AALTONEN O, et al. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique . J Supercrit Fluid,2002, 24(3):251-263.
JIA H J, HONG H L, SUO Q L, et al. Preparation of lutein microparticle via solution enhanced dispersion by supercritical fluids technology . China Food Additives (中国食品添加剂), 2013,(4):174-178.
XUE M, YAN T X, WANG Z X, et al. Preparation process of apigenin particles by supercritical CO2 anti-solvent method . Chin Tradit Herb Drugs (中草药), 2014, 45(11):1551-1555.
CHEN H G, HAN J, YUAN H L, et al. Application of micronization solubilization technology in process of Canhuang Tablets. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2013, 19(13):14-18.
YANG Y, WANG Y H, CAI G X, et al. Effect of micronization on dissolution of semen strychni . J Tradit Chin Med Univ Hunan (湖南中医药大学学报), 2012, 32(7):37-40.
YAN H M, DING D M, SUN E, et al. Effects of micronization on micromeritics properties of baicalin . China J Chin Mater Med (中国中药杂志) , 2014, 39(4):653-656.
KIM M S, JIN S J, PARK J S. Preparation characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process . Eur J Pharm Biopharm, 2008, 69(2):454-465.

基金

教育部博士点基金资助项目(20123107110005)
PDF(1243 KB)

Accesses

Citation

Detail

段落导航
相关文章

/